Journal of Algebra and Applied Mathematics

Vol. 22 (2024), No.1, pp.17-32
ISSN: 2319-7234
(C) SAS International Publications

URL : www.sasip.net

Edge and modular edge irregularity strength of some path related graphs

A.I. Almazaydeh

Abstract

For a simple, connected and undirected graph $G(V, E)$ the mapping $\phi: V(G) \longrightarrow\{1,2, \ldots, k\}$ that is defined from the vertex set $V(G)$ of the graph G to positive integers is called a vertex k-labelling. Let x and y be two vertices in $V(G)$, the weight of the edge $x y$-denoted by $w(x y)$ - is defined to be the sum of the label of the vertex x and the label of the vertex y. That is $w_{\phi}(x y)=\phi(x)+\phi(y)$.

An edge irregular k-labelling of a graph G is defined to be a vertex k-labelling in which the weights of two distinct edges are not equal. The edge irregularity strength, denoted by $e s(G)$, is an edge irregular k-labelling where k is the smallest such that the weights of the edges are distinct. If, by using some k-labelling where k is as above, the weight of each edge is divided by modulo the total number of the edges of the graph G, and the answers are all distinct, then that k-labelling is called a modular edge irregularity strength.

Haryeni et al. in [8] found that the edge irregularity strength of fan graphs F_{n} where $n \in\{2,3,4,5,6\}$ is $n+1$. In this paper, we generalise this result for $n=2,3,4, \ldots$. Also we state the edge irregularity strength and modular edge irregularity strength for some lollipop graphs.
AMS Subject Classification (2020): 05C78, 05C38
Keywords: Simple graph, k-labelling, irregularity strength, modular irregularity, fan graph, complete graph, lollipop graph

